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Preen gland removal increases plumage bacterial load but not
that of feather-degrading bacteria
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Abstract The preen gland is a holocrine sebaceous gland of
the avian integument which produces an oily secretion that is
spread on the plumage during preening. It has been suggested
that birds may defend themselves against feather-degrading
bacteria (FDB) and other potential pathogens using preen
gland secretions. However, besides some in vitro studies, the
in vivo bacterial inhibitory effects of the preen oil on the
abundance of feather-associated bacterial species has not yet
been studied in passerines. Here we tested the effect of gland
removal on the abundance of FDB and other-cultivable bacte-
rial loads (OCB) of male house sparrows (Passer domesticus).
Our results did not support earlier results on in vitro antibac-
terial activity of preen oil against FDB since the absence of the
preen gland did not significantly affect their loads related to the
control birds. In contrast, we found that preen gland removal

led to higher loads of OCB. This result suggests that the
antimicrobial spectrum of the preen oil is broader than previ-
ously thought and that, by reducing the overall feather bacterial
loads, the preen gland could help birds to protect themselves
against a variety of potentially harmful bacteria.
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Introduction

The ecology and evolution of bird–bacteria interactions
have received burgeoning attention during the last decade,
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mainly because birds carry a wide variety of emerging
bacterial pathogens (reviewed by Hubálek 2004), and this
microbial community may have adverse fitness consequen-
ces for their avian hosts (Moreno et al. 2003). Most of the
studies have focused primarily on the avian cloacal (e.g.,
Lucas and Heeb 2005; Ruiz-Rodríguez et al. 2009a, b;
White et al. 2010) and eggshell microflora (e.g., Cook et
al. 2005; Shawkey et al. 2009a; Peralta-Sánchez et al. 2010;
Ruiz-De-Castañeda et al. 2011; Soler et al. 2011, 2012),
while research on feather-associated bacteria was mostly
neglected (reviewed by Gunderson 2008), although main-
taining feathers in good condition is essential for important
functions like flight performance, insulation and signalling.

Avian plumage harbours rich communities of bacteria
(Shawkey et al. 2005; Bisson et al. 2007, 2009), some of
which degrade feathers (henceforth feather-degrading bac-
teria [FDB]). FDB are polyphyletic, and have been shown to
be present in a wide array of bird species (Burtt and Ichida
1999; Whitaker et al. 2005). They are distinguished from
other bacteria by their capacity to degrade β-keratin (Burtt
and Ichida 1999; Lucas et al. 2003; but see Cristol et al.
2005), which is the principal building block of feathers, and
these bacteria may impose substantial selection pressures on
host plumage (Shawkey et al. 2007; Gunderson et al. 2009).
FDB could compromise lifetime fitness through potentially
playing a role in sexual selection as well (Shawkey et al.
2009b), as they were shown to affect the ultraviolet chroma
and brightness of plumage signals (Shawkey et al. 2007;
Gunderson et al. 2009). To preclude or reduce the negative
effects of FDB, it has been postulated that birds have
evolved several defence mechanisms they can use against
these microorganisms (Clayton 1999; Gunderson 2008).
Besides modifying the melanin content of the feathers and
using different body maintenance behaviours (e.g., sunning,
bathing, anointing; reviewed by Gunderson 2008), birds can
use another antibacterial mechanism when coating their
plumage with preen gland secretions during preening.
These secretions could play a central role as a defence
mechanism (Gunderson 2008; Møller et al. 2009).

Multiple functions have been attributed to preen oil, a
topic that has been debated intensively in the ornithological
literature. Preen oil can act as a water repellent (Jacob and
Ziswiler 1982; Giraudeau et al. 2010a), reduce the risk of
predation (Reneerkens et al. 2005; Møller et al. 2010),
enhance plumage appearance (Piersma et al. 1999), protect
feathers from mechanical fatigue (Moreno-Rueda 2011),
serve as chemosignal in avian intra- and inter-specific com-
munication (Leclaire et al. 2011; Whittaker et al. 2011;
Campagna et al. 2012), regulate the number of ectosym-
bionts (Galván et al. 2008; Moreno-Rueda 2010; but see Pap
et al. 2010a) and the loads of microorganisms (FDB and
dermatophytes; Jacob et al. 1997; Shawkey et al. 2003;
Soler et al. 2008; Reneerkens et al. 2008; Møller et al.

2009). It has been shown that the experimental removal or
blockage of the preen gland deteriorates plumage condition
in rock pigeons (Columba livia; Moyer et al. 2003) and
mallards (Anas platyrhynchos; Giraudeau et al. 2010a).
These earlier studies have hypothesized that birds maintain
the physical integrity of feathers by inhibiting the prolifer-
ation and activity of FDB with preen oils coated onto their
feathers (Moyer et al. 2003; Giraudeau et al. 2010a). In this
perspective, recent studies have demonstrated the in vitro
antibacterial effects of preen oil of different bird species
against Gram-positive FDB (Shawkey et al. 2003; Soler et
al. 2008; Reneerkens et al. 2008). However, Muza et al.
(2000) stressed that patterns occurring in vitro may not be
same as those taking place in vivo. A recent study by
Giraudeau et al. (2013) showed that mallards deprived ac-
cess to the preen gland had no significant effect on feather
bacterial loads. These contrasting results and caveats
prompted us to test experimentally the antibacterial effect
of preen oil under in vivo conditions in a passerine species.

Here, we describe a test for the in vivo antibacterial
properties of the preen oil by surgical removal of preen
glands in house sparrows. We examined the effect of pres-
ence or absence of preen gland on the abundance of FDB
and other-cultivable bacteria (OCB) that inhabit the hosts’
plumage. Provided that preen oil may have antibacterial
properties against FDB (as shown by the in vitro studies of
Shawkey et al. 2003; Soler et al. 2008), we predicted higher
FDB loads in birds with removed preen gland as compared
with sham-operated conspecifics. We also expect a treat-
ment effect on OCB loads, which could be either an increase
or a decrease depending on the nature of the interactions
(synergism or antagonism, respectively) between various
bacterial species that do not grow independently from each
other (Møller et al. 2009; Czirják et al. 2010) within feather
associated bacterial communities. Currently, there is scarce
knowledge about the interactions among complex bacterial
communities on feathers and this precludes us to make more
specific predictions.

Materials and methods

General methods and aviary conditions

Adult male house sparrows (n014) were caught with mist
nets (Ecotone, Poland) on the 3rd November 2007 from a
cattle farm situated near Cluj Napoca (46°46′N, 23°33′E),
Transylvania, central Romania. After capture, birds were
transported into a large outdoor aviary [5×4×2.5 m (length
× width × height)] situated at the Campus of the Babeş-
Bolyai University, Cluj Napoca. Sparrows were fed ad libi-
tum with a mixture of seeds and supplemented with extra
protein source (grated boiled eggs and mealworms). To
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increase the comfort of the birds, we provided shelters
(small bushes), perches and nest boxes inside the aviary,
while sand and fresh water was made available ad libitum
throughout the experiment. For details on aviary conditions,
see Pap et al. (2010b).

Surgery protocol

After 4 days of habituation to confinement, 7 birds were
randomly assigned to the glandectomized group (i.e., surgical
removal of the gland) while the other 7 served as controls
(sham-operated; see below). Birds in the two groups did not
differ significantly either in body mass (F1,1202.75, P00.12)
or tarsus length (F1,1200.60, P00.45). Birds were anaesthe-
tized using ketamine–xylazine combination (Pap et al. 2010a),
and then an incision was made adjacent to the gland for birds
in sham-operated group. The preen gland from birds assigned
to the glandectomized group was excised using the method
described by Mureşan et al. (2009) and Pap et al. (2010a).
Skin closure was performed with absorbable surgical thread
(Dexon™ S, Covidien, USA) using a “U” suture and before
closure the wound was treated with an antibiotic powder
(Baneocin, Biochemie Austria GMBH). After surgery, we
covered the scar with an aluminum spray (Aluminium spray;
CP-Pharma, Hungary) to prevent birds from pulling out their
suture. The anaesthesia, wound closure and wound treatment
procedures were similarly applied in both groups. Post-
operation, all birds were moved in individual cages and re-
ceived antibiotics orally (Enrofloxacin, 2 ml sol. 10 %l−1

drinking water; Krka, Slovenia) for 10 days consecutively.
Following recovery (decided by visual inspection of wound
and condition), birds were moved back to the same large
outdoor aviary. Samples for microbiological analyses were
collected twice from each bird: 4 days after the birds were
re-introduced into the aviary (i.e., 2 weeks after surgery,
hereafter T1) and 1 month later (hereafter T2), at the end of
the experiment.

Due to the invasive nature of the experimental procedure,
we used as small of a sample size (n07 per group) necessary
to detect an effect (Moyer et al. 2003 used the same sample
size to test for the effect of preen gland removal on ectopar-
asites). During the experiment one glandectomized bird died
shortly after the first microbiological sampling due to un-
known reasons. At the end of the study, the birds were released
in good condition to their population of origin (Pap et al.
2010a). The experimental procedures were approved by the
Romanian Academy of Sciences (under license #2257).

Feather sampling and microbiological analyses

Bird handlers washed their hands with ethanol and waited
until it evaporated before touching the birds for microbio-
logical sampling to avoid exogenous contaminations.

Immediately after capture, feathers from predefined regions
(chest, tail and head) were removed with sterile tweezers
and placed in separate sterile Eppendorf tubes for each body
region before storage at −20 °C. Storage conditions and
duration can affect bacterial viability and diversity (Achá
et al. 2005). Our samples were stored at −20 °C without any
cryoprotectant, and due to this limitation the abundances of
the different bacterial groups measured are probably under-
estimated. However, since all samples were stored under the
same condition, we do not expect that this led to a method-
ological bias.

Microbiological analyses were performed under sterile
conditions separately for each body region, using the method
described by Czirják et al. (2010). Briefly, after obtaining a
bacterial solution with both free-living and attached micro-
organisms, 100 μl of these suspensions was spread in dupli-
cate on two growth media. To assess the total cultivable
bacterial load of the feathers, we used Tryptic Soy Agar
(#22091, Fluka), a rich medium on which both heterotrophic
bacteria and fungi grow, and added 0.1 mgl−1 cycloheximide
(#01810, Fluka) to inhibit fungal growth (TSAcy). To assess
the FDB load, we used Feather Meal Agar containing 15 gl−1

hydrolyzed feather meal (Saria Industries Bretagne S.A.S,
France), 0.5 gl−1 NaCl, 0.30 g l−1 K2HPO4, 0.40 g l−1

KH2PO4, 15 g l−1 agar and 0.1 mgl−1 cycloheximide
(FMAcy; Gunderson, personal communication). Due to the
chemical and thermo-treatment of the feathers, in hydrolyzed
feather meal the β-keratin is broken to smaller peptide units,
which might have affected our results. However, a pilot study
on a subset of samples (n014) revealed significant correlation
between the abundances of FDB measured on FMAcy with
artisanal and commercial, hydrolyzed feather meal (Pearson’s
product moment correlation, r00.65, P00.01).

Due to the environmental origin of the feather-associated
bacteria (Burtt and Ichida 1999; Lucas et al. 2003), plate
cultures were incubated at 25 °C for 3 and 14 days in the
case of TSAcy and FMAcy, respectively. Most bacteria
grow faster on TSAcy compared with the FMAcy, and as
shown by previous studies shorter incubation times on
TSAcy are required to assess the total cultivable bacterial
load of the feathers. After 3 days of incubation, the colonies
started to merge on TSAcy, while 2 weeks of incubation
were needed to clearly distinguish the single colonies on
FMAcy (Shawkey et al. 2009b; Czirják et al. 2010). The
number of visible colony-forming units (CFU) on each plate
was counted, averaged between duplicates and microbial
concentrations were expressed as CFUmg–1 feathers for
each medium and for each body region. The abundance of
OCB was estimated as the total abundance of cultivable
bacteria minus FDB abundance (i.e., TSAcy minus
FMAcy; Møller et al. 2009; Czirják et al. 2010). The bacte-
rial counts for different body regions were added together
for each media type as estimates of total FDB and OCB load
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on each individual (Shawkey et al. 2009b; Czirják et al.
2010).

Statistical analyses

We obtained data for 14 and 13 individuals during the first and
second sampling, respectively. All analyses were carried out
using general linear models as implemented in R statistical
environment version 2.11.1 (R Development Core Team
2010). The four dependent variables (FDB and OCB loads
at first sampling time and the difference in FDB and OCB
loads expressed as T2 minus T1 values, hereafter labelled
with Δ) were analyzed separately. The FDB load at first
sampling was log10-transformed to meet the normality as-
sumption of parametric tests. The dependent variables had a
normal distribution of error (Shapiro–Wilk test, all W>0.91,
all P>0.19) and variances were homogenous (Bartlett test, all
K2<2.49, all P>0.12). Treatment was included as fixed factor
and mass and tarsus length were entered as covariates in a full
factorial design. We reached minimal models by backward
stepwise removal of non-significant terms. Mean ± SE values
are shown throughout.

Results

The abundance of feather-associated bacteria in male house
sparrows was highly variable (Table 1). At T1, none of the
bacterial groups differed significantly between the two exper-
imental groups (general linear model, FDB: F1,1200.97,
P00.34; OCB: F1,1201.85, P00.20), and there was a signif-
icant positive correlation between FDB and OCB (Pearson’s
product moment correlation: r00.64, P00.01, n014).

The ΔFDB loads were not significantly different between
birds in the sham-operated and glandectomized groups
(F1,1100.07, P00.80; Fig. 1a). In contrast, ΔOCB was sig-
nificantly affected by the gland removal, as bacterial loads in
the glandectomized group showed a significantly greater

increase relative to the sham-operated group (F1,1105.30,
P00.04; Fig. 1b). The correlation between FDB and OCB
was not significant at T2 (r00.34, P00.25, n013).

Discussion

We found that preen gland removal in male house sparrows
had no significant effect on the changes of FDB loads
whereas it significantly affected the changes in the abun-
dance of OCB. Interestingly, our results contrast with pre-
vious in vitro experiments which showed antibacterial
effects of the preen oil against Gram-positive FDB
(Shawkey et al. 2003; Soler et al. 2008; Reneerkens et al.

Table 1 Summary statistics of the abundance (CFUmg–1 feather) of
two groups of bacteria isolated from feathers of adult male house
sparrows

Bacterial group Mean SE Median Range

T1

FDB 101.69 24.33 74.11 18.57–311.17

OCB 2,447.79 455.42 2,240.24 397.00–5,990.57

T2

FDB 133.35 18.71 135.72 21.56–254.77

OCB 3,504.61 484.97 3,664.50 991.40–7,541.20

Feather-degrading bacteria (FDB) and other-cultivable bacterial (OCB)
loads were measured twice, at the start of the experiment (T1, n014)
and 1 month later (T2, n013, see Materials and methods for details)

Fig. 1 Changes (post-treatment minus pre-treatment) in feather-
associated bacterial loads (CFUmg–1 feather) of captive male house
sparrows in presence (sham-operated group) or absence (glandectom-
ized group) of preen glands. Mean load±SE of a feather-degrading
bacteria (FDB) and b other-cultivable bacteria (OCB) are shown
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2008). We emphasize that our study is one of the first to test
the antibacterial properties of the preen oil in vivo. Our
results also provide evidence that preen gland secretions
reduce the increase in the loads of OCB, thus possibly
reducing the densities of potentially harmful bacteria. In
an earlier experiment with mallards we have shown that
having access to preen glands or not did not affect the
loads of FDB or of total cultivable bacteria of plumage
(Giraudeau et al. 2013).

It should be noted that previous in vitro tests have used a
limited number of isolated bacterial strains, mainly Bacillus
licheniformis, to test the potential effects of preen gland
secretions (Shawkey et al. 2003; Soler et al. 2008;
Reneerkens et al. 2008). In contrast, in our experiment, the
differences between the absence or presence of preen gland
secretions were tested on the bacterial abundances naturally
present on the feathers, in which case, susceptibility to preen
gland secretions takes interactions among bacterial strains
into account. Our results suggest that FDB were better able
to survive the chemical defences of hosts since the presence
or absence of preen gland secretions did not affect their
abundance. In contrast, OCB increased in densities more
successfully when hosts were deprived of gland secretions,
indicating that their proliferation is likely controlled by
preen oil. In support of this hypothesis, it is worth noting
that at the end of the experiment birds without preen glands
tended to have greater overall bacterial loads on their plum-
age than sham-operated birds (P00.09). Future examina-
tions of bacterial community structure and composition
could help elucidate the susceptibility of specific bacterial
strains to preen gland secretions and the potential interac-
tions between selection pressures exerted by preen gland
secretions, FDB and other feather-dwelling microorganisms
(Soler et al. 2012).

Results from our in vivo study raise questions concerning
the mechanisms potentially responsible for the discrepancies
with the earlier in vitro studies. First, differences could have
emerged owing to methodological issues, as we tested the
antibacterial activity of the preen oil in vivo on overall
bacterial abundances, whereas previous results were
obtained in vitro effects against specific isolated strains or
a model feather-degrading bacterial species, B. lichenifor-
mis. Furthermore, in vitro studies used different techniques
(the “disc diffusion test” in Shawkey et al. 2003; the “spot-
on plate test” in Soler et al. 2008). Thus, it is likely that in
vitro studies have overestimated the antibacterial capacity of
the preen oil when testing the minimum inhibitory and
bactericidal concentrations out of the natural context of
feathers. This statement is reinforced by results of the in
vivo experiment on mallards, where blocking access to
preen gland did not affect the loads of FDB (Giraudeau et
al. 2013). To date, the only study which tested the in vitro
antibacterial capacity of preen oil applied by the birds on

their feathers suggested that the main function of preen oil is
to form a physical barrier that prevents FDB colonization on
plumage (Reneerkens et al. 2008). This hypothesis could
explain the observations that experimental removal or
blockage of the preen gland is associated with a deteriora-
tion of plumage condition (Moyer et al. 2003; Giraudeau et
al. 2010a), without changing the abundances of FDB
(Giraudeau et al. 2013).

We did not find a significant effect of gland removal on
increases of FDB loads, although they were expected based
on published in vitro effects. It is possible that our captive
birds faced different time and energy constraints than free-
living house sparrows. To compensate the lack of access to
gland secretions, our captive birds could have spent more
time performing self-maintenance behaviours, such as
water- and dust-bathing or sunning (Saranathan and Burtt
2007; Gunderson 2008; Clayton et al. 2010). A study on
captive Northern cardinals (Cardinalis cardinalis) showed
that the birds spent a substantial amount of time sunning or
water bathing and that FDB did not degrade their plumage
(Cristol et al. 2005). In our aviaries, the sparrows had ample
time and opportunities to water-, dust- and sun-bath.
However, we think that if these behavioural defences have
general bactericidal effects, they should have affected FDB
and OCB in similar way. Differences between the two
bacteria subgroups in terms of resistance against preen oil,
host colonization strategy and competitive ability clearly
deserves further scrutiny to elucidate the differential effect
of gland secretions.

An alternative hypothesis could be that preen gland re-
moval affected the behaviour and the physiology of the
birds, which led to our non-significant difference in FDB
loads after preen gland removal. However, it has been
previously shown that preen gland removal or blockage
did not affect the behaviour in rock pigeons (Moyer et al.
2003), house finches (Carpodacus mexicanus; López-Rull
et al. 2010) or mallards (Giraudeau et al. 2010b). Moreover,
the surgical extirpation of the preen gland of rock pigeons
did not affect serum lipids, cholesterol or calcium metabo-
lism (Montalti et al. 2006). Thus, our results were probably
not due to a change in the birds’ behaviour or physiology.

Besides FDB, the avian plumage harbours numerous other
bacterial species (Shawkey et al. 2005; Bisson et al. 2007,
2009), including potential pathogens such as Pseudomonas or
Salmonella spp. (Mallinson et al. 1989; Shawkey et al. 2005).
In fowl, Bandyopadhyay and Bhattacharyya (1996) suggested
that preen gland secretions were responsible for controlling
bacterial growth and community composition on the skin and
in the green wood hoopoes (Phoeniculus purpureus) it has
been demonstrated that the preen oil is effective against a wide
range of bacterial pathogens (Burger et al. 2004). In contrast to
these results, in mallards preen oil does not have a significant
effect on OCB loads (Giraudeau et al., unpublished data). As
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found by Burger et al. (2004), our findings emphasize the
negative effect of preen gland on the abundance of other-
cultivable bacteria and indicate that the antibacterial spectrum
of preen oil is wider than previously thought. The chemical
composition of the preen oil of different bird species is highly
variable (Jacob and Ziswiler 1982), which could explain the
differences in the antibacterial spectrum. Further in vivo and
in vitro comparative studies could determine whether the
chemical composition or other underlying mechanism of the
antibacterial properties can explains the differences found
between studies (Giraudeau et al. 2013).

It has been shown that both the quantity (Pap et al.
2010a) and the chemical composition (Reneerkens et al.
2005, 2008; Soini et al. 2007; Martín-Vivaldi et al. 2009)
of the preen oil changes seasonally. Since our study was
carried out in the non-breeding, winter period, it would be
important to examine the generality of our results by testing
in different seasons and by extending to the whole bacterial
communities using culture-independent techniques
(Shawkey et al. 2005; Mennerat et al. 2009). Identifying
the bacteria that are specifically affected by preen oils would
open promising avenues towards a better understanding of
the antibacterial function of preen glands and their secre-
tions in different bird species.
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