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Pathogens are potent selective forces that can reduce the fitness of their

hosts. While studies of the short-term energetic costs of infections are

accumulating, the long-term costs have only just started to be investigated.

Such delayed costs may, at least in part, be mediated by telomere erosion.

This hypothesis is supported by experimental investigations conducted on

laboratory animals which show that infection accelerates telomere erosion

in immune cells. However, the generalizability of such findings to natural

animal populations and to humans remains debatable. First, laboratory

animals typically display long telomeres relative to their wild counterparts.

Second, unlike humans and most wild animals, laboratory small-bodied

mammals are capable of telomerase-based telomere maintenance through-

out life. Third, the effect of infections on telomere shortening and ageing

has only been studied using single pathogen infections, yet hosts are often

simultaneously confronted with a range of pathogens in the wild. Thus,

the cost of an infection in terms of telomere-shortening-related ageing in

natural animal populations is likely to be strongly underestimated. Here,

we discuss how investigations into the links between infection, immune

response and tissue ageing are now required to improve our understanding

of the long-term impact of disease.
1. Introduction
Parasites are a potent selective force, as they reduce the fitness of their hosts

through the direct cost of parasitism itself, and the indirect cost of an

immune activation [1,2]. Costs of immune responses could be both short and

long term. Short-term costs are reduced resource availability for other demand-

ing activities such as growth, reproduction and other forms of self-maintenance

[3]. These costs have been well documented [4]. In addition to reduced invest-

ment in tissue maintenance due to trade-offs, infections can lead to accelerated

ageing through direct effects of inflammatory processes on telomere erosion

(figure 1). These long-term costs in terms of ageing rate have until recently

been largely overlooked. Telomeres are regions of non-coding DNA at the

end of linear eukaryotic chromosomes that shorten during each cell division

and in response to oxidative stress [5,6]. While the link between ageing and

telomere erosion has to be interpreted with caution, since questions about

mechanisms and direction of causality complicate this association [7], telomere

erosion has been proposed as an essential component of the ageing phenotype

[5] and a major driving force behind immunosenescence [8]. In fact, telomere

shortening due to other natural processes (i.e. stress, cellular ageing) leading
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Figure 1. Two non-mutually exclusive pathways with reversed causality directions that link responses to infections with ageing rate. Numbers indicate references
supporting related hypotheses in wild populations; question marks indicate either indirect support or missing support in wild populations.
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to the senescence of the immune system can be viewed as an

opposite, non-mutually exclusive causal pathway linking

ageing rate and immune responses (figure 1).

The long-term costs of an infection on telomere dynamics

in wild animals remain mostly unclear. Most studies investi-

gating these costs have been conducted on small laboratory

mammals, but the generalizability of the results obtained in

these studies to natural animal populations remains debata-

ble for several reasons. First, laboratory studies usually

disregard the importance of individual variation in disease

resistance and tolerance, yet unlike traditional laboratory

model species, wild animals exhibit extensive variation in

responses to infection [9]. Second, while laboratory studies

usually focus on one type of immune challenge at a time,

multiple infections are the rule rather than the exception in

wild animals [10]. Multiple infections may, on the one

hand, accumulate immune-mediated pathology. On the

other hand, activation of one arm of the immune system

can suppress the other arm, preventing immune pathology

in the case of co-infections [10]. We thus suggest that telomere

dynamics in wild individuals might be shaped by the

interaction between the whole pathogen community, the

inherent immune capacity, and the prioritized life-history

and/or immune strategy (resistance versus tolerance).

Accordingly, we can distinguish between hypotheses that

should be studied in order to support either the ‘ageing

cost of infections pathway’ or ‘immunosenescence pathway’

(figure 1). In this article, we will review the available

evidence on the link between infections and telomere

dynamics in wild animals, and describe possible associated

physiological mechanisms that are relevant in the context of

optimal fitness outcome in the wild, but would be difficult

to study in laboratory conditions.
2. What do we know?
Studies in humans have repeatedly shown that patients with

chronic infections have shorter telomeres in immune cells

than healthy individuals, and that individuals with shorter

telomeres have increased mortality rates [11]. This literature

in humans has established a relationship between health

status and the rate of ageing, but the causal role of immune

activation on telomere shortening and human longevity
remains elusive owing to obvious experimental limitations

with human subjects [12]. A handful of experimental studies

in animal model species have demonstrated that exposure to

pathogens results in accelerated telomere erosion in immune

cells. The generalizability of these results to humans and wild

animals has been questioned, since laboratory strains are

often heavily inbred and display unusually long telomeres

relative to their wild counterparts [8,13]. In addition,

humans (characterized by short telomeres and repressed tel-

omerase in somatic tissues) and some smaller-bodied

mammals including laboratory rats and mice (characterized

by long telomeres and telomerase-based telomere mainten-

ance in somatic tissues) do not present the same telomere

dynamics throughout life [14]. Accordingly, similar exper-

imental set-ups that have been used on classical laboratory

models should be applied in wild animal species.

According to the hypothesis suggested in the current

study (the ageing cost of infections pathway), infections

should lead to faster ageing. According to the alternative

hypothesis (the immunosenescence pathway), ageing

should lead to weaker immunity (figure 1). How much sup-

port can we find for either of these hypotheses from studies in

wild populations? Non-experimental studies showing age-

related declines in telomere length and immunity (i.e. [15])

do not allow us to determine the direction of causality that

is important for distinguishing between the two pathways.

It is noteworthy that while the immunosenescence hypoth-

eses seems to be the ‘null hypothesis’ here, there is a lack of

studies experimentally manipulating ageing rate and/or telo-

mere shortening rate and recording the resulting changes in

immune responses or infection rates. This shortage can be

explained by the scarcity of experimental approaches allow-

ing the manipulation of telomere length (but see [16] for a

possible method). Current knowledge of the consequences

of infections on telomere dynamics in wild populations also

remains limited. In a cross-sectional study that, by definition,

cannot measure telomere erosion and the pre-infection vari-

ation in telomere length, Watson et al. [1] did not find a

significant relationship between gastrointestinal nematode

parasites load and leucocyte telomere length in Soay sheep

(Ovis aries). By contrast, using the same approach, Karell

et al. [17] found that tawny owls (Strix aluco) carrying Leuco-
cytozoon disease had shorter telomeres than uninfected

individuals. Longitudinal studies have shown associations
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between telomere erosion and bovine tuberculosis infection

status in wild European badgers (Meles meles) [17] and with

malaria in great reed warblers (Acrocephalus arundinaceus)

[18]. The study on badgers is also noteworthy in the context

of the current hypothesis, because it showed that age-related

declines in immune response are unrelated to immune cell

telomere length in a wild mammal [17]. On the one hand, it

does not provide direct support for the hypothesis that

immune responses can lead to accelerated ageing; on the

other hand, it indicates that at least in this model system,

the alternative pathway (the immunosenescence pathway,

figure 1) is not supported.

The discrepancies between these studies could be attribu-

ted to different types of pathogens studied, timescales and

levels of infection. Only three studies have, so far, used an

experimental approach to investigate this topic in wild ani-

mals. In a study performed in captivity with the F2

offspring of wild-caught house mice, where animals were

exposed to an infectious agent (Salmonella enterica), infected

animals showed faster telomere erosion compared to non-

infected individuals [8]. Inversely, in a field experiment, an

antimalarial treatment administered to adult blue tits had

no effect on telomere shortening rates [19]. Finally, in a

study combining field and captive experimental approaches,

Asghar et al. showed the long-term costs of a malaria infec-

tion on lifespan and survival in great reed warblers,

potentially mediated through a significantly greater rate of

telomere shortening in six tissues [18,20]. Given the higher

inter-individual than intra-individual variability in telomere

length, any cross-sectional study will have a very low

power to detect any cost of infection. Thus, in addition to

experimental studies manipulating infection status in non-

model animals, we recommend longitudinal and long-term

studies to understand these costs in the context of ageing

(with telomere measurement in blood samples).
3. What to measure?
A significant part of the studies on the long-term costs of an

infection on ageing in the wild have used avian species with

telomere length measured in red blood cells [18,19], where it

is supposed to reflect telomere length in haematopoietic

tissues (but see [21]). The next step, in birds but also in

other organisms, is thus to measure telomere shortening in

immune cells in order to study how the type and extent of

immune response mounted impact the rate of ageing of the

immune system. Immune cells are expected to be particularly

vulnerable to telomere shortening under an infection because

of their rapid proliferation. In addition, the enzymes and

enzyme complexes of immune cells such as phagocytes and

lymphocytes can rapidly produce large amounts of reactive

oxygen species (ROS) [22]. Due to their cytotoxic character,

ROS can directly contribute to the degradation of the patho-

gen, but this increased production of ROS may also be costly

by impacting immune cells through DNA damage and

telomere shortening [6].

Recent studies in humans have shown that the rate of

telomere attrition and telomerase activity are significantly

different between cell types, suggesting cell-specific suscepti-

bility and telomere length regulation mechanisms [23,24].

Even more, it has been recently shown in a wild mammal

(mandrill, Mandrillus sphinx) that leucocyte composition
varies temporally and that these variations are mirrored by

change in blood telomere length [25]. Thus, any conclusion

based on whole blood or total white blood cells is likely to

be biased, especially in the case of infections that affect

white blood cell count and composition [26]. A next step

will therefore involve measuring telomere shortening in

specific populations of immune cells [17]. This approach

would also make it possible to discern whether any effects

of infection on telomeres were due to changes in circulating

immune cell subtypes, which may differ in the mean telo-

mere length (e.g. an increasing representation of memory T

cells with shorter telomeres relative to naive T cells with

longer telomeres) versus within-cell telomere erosion in

response to infection [24]. However, since sample amounts

are generally small in studies of wild animals, methodologi-

cal advancements would be needed before this approach

can be used, since cell sorting would have to be followed

by DNA extraction and the analysis of telomere length.
4. Living in the real world: tolerance, resistance
and co-infections

Defence against parasites can be divided into two concep-

tually different components: resistance, the ability to limit

parasite burden, and tolerance, the ability to limit disease

severity induced by a given parasite burden [27]. Tolerance

does not reduce the parasite burden, but decreases the host

susceptibility to tissue damage [20]. Currently, very little is

known about the full spectrum of tolerance mechanisms.

However, studies on mice with malaria infection have

demonstrated that protecting tissues from the toxic bypro-

ducts of immune responses is one of the mechanisms [20].

Telomere shortening accompanies strong responses to chronic

parasite exposure from both the innate and acquired arms of

the immune system [8]. Preventing telomere shortening

caused by inflammation could be one of the molecular mech-

anisms behind parasite tolerance. Accordingly, individuals

exhibiting tolerance to parasites should also demonstrate

lower telomere shortening rates and have longer telomeres

in comparison with individuals that apply immune responses

for to fighting off parasites. In line with this hypothesis, in a

natural population of juvenile brown trout (Salmo trutta),

individuals that were less sensitive to parasite-induced

impaired growth (and therefore demonstrated higher toler-

ance) showed longer telomeres [28]. We therefore predict

that host phenotypes that demonstrate higher levels of toler-

ance also show reduced telomere attrition rates during the

infection when compared with host phenotypes that are

more prone to fight off the parasites (higher resistance pheno-

types), and suggest that host telomere attrition rate should be

an important trait to analyse in future studies of disease

tolerance in the wild.

Wild animals are usually affected by several pathogens at

the same time. While this could lead to amplified long-term

costs of infection, multiple infections can sometimes lead to

lowered inflammatory responses to specific types of parasites

[10]. For example, chronic helminth infections typically induce

an anti-inflammatory type 2 immune response that limits

damage to host tissues by downregulated inflammatory type

1 immune response usually triggered by bacterial infections

[10]. The possible amplifying or subduing effects of co-

infections on telomere shortening have so far not been studied,
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partly because the already complex dynamics of an immune

response through time will be compounded by immunological

variation among hosts in their pathogen exposure, age, nutri-

tion and other varying aspects found in natural populations

[11]. At the same time, natural variation among individuals

should be viewed as an unused potential for new discoveries,

rather than a nuisance. We therefore encourage studies on

telomere dynamics looking at the simultaneous effect of

co-infections, as these could give more reliable answers to the

question about long-term costs of infection for wild animals.
rnal/rsbl
Biol.Lett.15:20190
5. Conclusion
While our understanding of the short-term energetic costs of

infection are accumulating, the longer-term consequences of

infection on ageing remain to be explored. Tissue damage

and intense cell proliferation associated with infection is

likely to accelerate ageing, a process possibly mediated by

increased rates of telomere shortening. Studying the impact
of infection on telomere dynamics in natural animal hosts is

thus essential, since natural selection has optimized these

processes in the context of lifetime fitness, and the costs

and benefits associated with telomere shortening cannot be

understood outside the ecological context. Experimental

studies manipulating infection levels and immune responses,

and measuring telomere dynamics in the wild could shed

light on the causality. However, longitudinal and long-term

studies are crucial for understanding the telomere-mediated

effect of infectious diseases on ageing in wild populations,

with important implications for our understanding of the

long-term cost of infection in humans.
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