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Can House Finches (Carpodacus mexicanus) use non-visual cues
to discriminate the carotenoid content of foods?
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Abstract Carotenoid pigments are involved in different

physiological processes (e.g., immunoenhancement, antioxi-

dant activity) in addition to coloring plumage and integuments.

As animals cannot synthesize these pigments de novo, it has

been proposed that carotenoids constitute a limiting resource

that birds may specifically seek in their food. Confirming this

hypothesis, it was recently found that birds can discriminate

between carotenoid-enriched diets and control diets, even if

both have the same color, suggesting that there may be

underlying non-visual (e.g., olfactory, taste) mechanisms for

detecting carotenoid presence or enrichment in foods. In this

study, we performed two experiments with male House Fin-

ches (Carpodacus mexicanus) to test if this species is able to

discriminate between (1) carotenoid-enriched and plain sun-

flower seeds (while controlling for food coloration), and (2)

plain seeds scented with b-ionone, which is a carotenoid-

degradation product that is common in many fruits and is one

of the most powerful flavor-active organic compounds, or a

sham odorant. We found that finches did not show significant

food preferences in either experiment, indicating that they did

not use odor or flavor cues associated with carotenoids to

discriminate between foods. However, our results do not rule

out the possibilities that other flavors or odors can be used in

discrimination or that finches may learn to discriminate flavors

and odors over longer periods of time or at other times of year

through post-ingestive feedback mechanisms.
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Zusammenfassung

Können Hausgimpel (Carpodacus mexicanus) andere als

optische Informationen verwenden, um den Karotinoid-

Gehalt ihrer Nahrung einzuschätzen?

Über die Farbgebung von Gefieder und Haut hinaus sind

Karotinoid-Farbstoffe an diversen physiologischen Pro-

zessen beteiligt (Stärkung des Immunsystems, Antioxidant-

ien-Aktivität). Da Tiere diese Farbstoffe nicht selbst

synthetisieren können, wurde bereits die Idee präsentiert,

Karotinoide stellten einen Ressource-Faktor dar, den Vögel

gezielt in ihrer Nahrung suchen. Als Bestätigung dieser

Hypothese wurde kürzlich herausgefunden, dass Vögel

zwischen Karotinoid-angereicherter und Kontroll-Nahrung

unterscheiden können, auch wenn beide die gleiche Farbe

haben. Dies legt nahe, dass es außer optischen noch andere

Informationen geben muss (z. B. Geruch, Geschmack), die

als Mechanismen dienen können, das Vorhandensein von,

und den Gehalt an, Karotinioden in der Nahrung festzu-

stellen. In unserer Untersuchung führten wir ein Zwei-Stu-

fen-Experiment mit männlichen Hausgimpeln (Carpodacus

mexicanus) durch, um zu testen, ob diese Art unterscheiden

kann zwischen (1) Karotinoid-angereicherten und reinen

Sonnenblumensamen (bei gleicher Farbe), und (2) reinen,

mit b-Iononen parfürmierten Samenkörnern und solchen
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mit einem anderen, ähnlichen Duft (b-Ionone sind ein in

vielen Früchten vorkommendes Abbauprodukt von Karo-

tinoiden und eine der am stärksten duftenden organischen

Verbindungen überhaupt). Wir stellten fest, dass die Finken

in den Experimenten keinerlei signifikante Bevorzugung

einer der Nahrungsstoffe zeigten, was darauf hinwies, dass

sie in der Wahl ihrer Nahrung keine mit Karotinoiden zu-

sammenhängende Geschmacks- oder Geruchs-Informatio-

nen benutzten. Andererseits schließen unsere Ergebnisse

aber auch nicht die Möglichkeit aus, dass in der Unter-

scheidung von Nahrungsstoffen ein anderer Geruch oder

Geschmack benutzt wurde, oder dass die Finken die Un-

terscheidung anhand von Geruch oder Geschmack über

einen längeren Zeitraum oder zu anderen Jahreszeiten über

Rückkopplungsmechanismen in der Verdauung lernen.

Introduction

Most food items in nature offer animals a variety of

nutrient types and concentrations (Pulliam 1975). How-

ever, animals often need particular nutrients to meet

somatic or reproductive demands and in some instances

have developed foraging strategies to pursue food that

contains these specific limiting nutrients (Murphy and King

1987). Detection and discrimination of foods enriched with

calcium, sodium, or amino acids are widespread (e.g.,

Murphy and King 1987; Shulkin 1992; Tordoff 2001).

Carotenoids are valuable nutrients that have attracted

much research attention by behavioral ecologists in recent

years (Svensson and Wong 2011). Carotenoids generate the

yellow, orange, and red color of many animals (McGraw

2006) and are involved in different physiological pro-

cesses, such as immunomodulation, antioxidant activities,

and visual tuning (McGraw 2006). As animals cannot

synthesize these pigments de novo, it has been proposed

that carotenoids constitute a limiting resource for birds

(Blount 2004; Costantini et al. 2007), and have become a

model system for examining the costs and functions of

bright coloration (Blount and McGraw 2008).

Given the diverse benefits of carotenoids, natural

selection may favor the evolution of specific capacities to

detect food containing high levels of carotenoids (McGraw

2006; Senar et al. 2010). Color has been proposed as the

primary means of identifying carotenoid-rich foods

(McGraw 2006), but there are currently conflicting reports

in the literature on this mechanism. First, in a survey of 60

bird-dispersed fruiting tree species, Schaefer et al. (2008)

showed that fruit coloration was not linked with carotenoid

content. In contrast, a recent experimental study with Great

Tits (Parus major) found that birds are able to discriminate

between carotenoid-enriched diets and control diets, even if

both have the same color (Senar et al. 2010). Moreover,

Catoni et al. (2011) found that individual Garden Warblers

(Sylvia borin) did not select food for the maximum amount

of carotenoids, but choose for a highly consistent carot-

enoid intake during the course of different dual-choice

experiments where they had the choice between caroten-

oid-enriched and control diet, both with the same color.

Taken together, these results suggest that there may be

underlying non-visual (e.g., olfactory, taste) mechanisms

for detecting carotenoid presence/enrichment in foods.

To test this idea, we performed two captive experiments

with House Finches (Carpodacus mexicanus)—a North

American passerine species with sexually selected carot-

enoid-based male plumage coloration (Hill 2002). We

repeated Senar et al.’s (2010) experiment and offered males

a choice between carotenoid-enriched and plain sunflower

seeds, while controlling for food coloration by dyeing the

seeds green and presenting the food under filtered light.

Thus, this first experiment offered the birds the opportunity

to discriminate carotenoid content of food based on smell

or taste. In the second experiment, we isolated the olfactory

component by presenting the birds with a choice of plain

seeds scented with b-ionone or a sham odorant. b-ionone

was chosen because it is a product of carotenoid degrada-

tion, is common in many fruits, is a known attractant for

invertebrates, and is one of the most powerful flavor-active

organic compounds known (Britton 2008). We predict that

birds may prefer seeds scented with b-ionone if they dis-

criminate between foods using their smell. Finally, to

determine if the ability to detect carotenoids in food is

related to a male’s plumage carotenoid-based coloration,

we examined the link between food preference and plum-

age coloration in both experiments.

Methods

Study animals

From 1 September to 3 October 2010, we captured 15 male

House Finches using baited basket traps (McGraw et al.

2006) from each of three sites in the Phoenix metro area:

Estrella Mountain Regional Park, Goodyear, AZ (Site 1);

Arizona State University (ASU) Campus, Tempe, AZ (Site

2); and a private residence in Chandler, AZ (Site 3). Birds

were caught at the different sites as part of a separate

ongoing study of finches in different urban/rural settings.

We housed birds individually in small wire cages

(0.6 9 0.4 9 0.3 m) in an environmental chamber on the

ASU campus, at a constant temperature of 20�C and a

photoperiod that mimicked natural conditions. Birds were

fed an ad libitum diet of black oil sunflower seeds and tap

water.
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Plumage coloration

Plumage coloration was quantified using digital photogra-

phy, following standard published methods for this species

(Oh and Badyaev 2006) and others (e.g., McGraw et al.

2002). Because House Finch plumage does not signifi-

cantly reflect in the UV (Keyser and Hill 1999; McGraw

and Hill 2000), techniques that rely on visible-light are

sufficient to capture variation in bird-visible and carot-

enoid-relevant coloration. Using a Canon PowerShot

SD1200S, we took two separate photographs of the head,

breast, and rump of each bird against a gray-board, using

identical distances from camera to object, shutter, expo-

sure, and flash settings for each photograph, and including

a color/size standard in each photo to control for any slight

variations in object illumination. Ambient lighting was

kept constant by photographing finches in the shade of

buildings. Digital images (JPEG, 3,648 9 2,736 pixels)

were imported into Adobe Photoshop to extract plumage

hue of the carotenoid coloration. Values for the two pic-

tures of each bird were averaged for statistical analyses

(repeatability = 0.99 calculated using the method of Les-

sells and Boag 1987).

Carotenoid discrimination test

To examine whether House Finches can non-visually dis-

criminate foods on the basis of carotenoid content, we

prepared two types of experimental seed—control and

carotenoid-enriched. Control seed consisted of plain whole

sunflower seed kernels, which contain very low levels of

carotenoids (see below), while carotenoid-enriched seed

consisted of the same seeds coated with zeaxanthin

(OptiSharpTM; DSM, Heerlen, Netherlands). To apply the

carotenoid to the seed, we suspended 4.5 mg of zeaxanthin

in 150 ml of water, spread it over 450 g of seed, then dried

the seeds overnight at 50�C. This supplementation signif-

icantly enhanced the carotenoid content of the seeds

(t = 9.62, df = 2.45, p = 0.0052). The high-carotenoid

seed contained 3.72 ± 0.25 lg/g of total carotenoids,

while the regular seeds contained 1.21 ± 0.08 lg/g. Both

concentrations are in the range of carotenoid concentra-

tions found in natural House Finch food (Hill et al. 2002).

In an effort to remove possible color-visual cues generated

by the addition of carotenoids (carotenoid-enriched seeds

were more orange), we dyed both seed types with 30 drops

of green food coloring (McCormick, Sparks, MD, USA), a

preferred food color of House Finches (Bascuñán et al.

2009), and presented the seeds under filtered light. We

placed red filters (Roscolux Fire #19; Rosco Laboratories,

Stamford, CT, USA) over standard fluorescent light bulbs

(Sylvania, 34 W, T12 rapid start Super Saver; Osram-

Sylvania, Danvers, MA, USA) to produce a light envi-

ronment limited to wavelengths [550 nm (Toomey and

McGraw 2011). We measured the spectral properties of

both seed types with a UV–Vis spectrophotometer (Butler

et al. 2011), and assessed the chromatic and achromatic

contrast of the types using an avian visual model (Voro-

byev et al. 1998; supplemental methods). The spectral

sensitivities of the House Finch are not known, so we used

parameters from the Canary (Serinus canaria), the most

closely related species for which these data are available

(Das et al. 1999). We found that the carotenoid-enriched

seeds were visually indistinguishable from the control

seeds when all were dyed green and presented under red-

filtered light; in other words, the avian visual chromatic

and achromatic contrast between plain and carotenoid-

enriched seeds did not differ significantly from the amount

of contrast within each seed type (Table 1). We are con-

fident that the unnatural light environment used in this

experiment did not affect bird behavior, as they ate the

same amount of seed (2–3 g) as did birds in a similar

experiment with non-filtered light (Bascuñán et al. 2009).

For the food choice tests, we measured out 10 g of each

seed type into separate white dishes and presented them

simultaneously to each bird for 1 h (Bascuñán et al. 2009).

The dishes were 15 cm apart, and we randomized the

spatial presentation of the carotenoid-enriched and control

food. We carried out two feeding tests per bird on separate

days (11 and 13 November 2010), beginning at 0700 hours

and following an overnight period of food deprivation. At

the conclusion of each test, we quantified food consump-

tion by measuring the mass of the food remaining in each

dish. We did not take into account the spilled seeds because

the number of seed on the floor of the cage were negligible

compared to the amount of seed eaten by the birds.

Table 1 Avian visual model contrast values within a seed type and between plain and carotenoid-enriched seeds under experimental lighting

conditions

Contrast within (jnds) Contrast between (jnds) t df p

Chromatic plain 2.33 ± 0.20 2.54 ± 0.12 -0.95 328 0.34

Chromatic carotenoid 2.34 ± 0.13 -0.93 328 0.35

Achromatic plain 11.78 ± 0.88 12.58 ± 0.62 -0.74 328 0.46

Achromatic carotenoid 12.52 ± 0.83 -0.059 328 0.95
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Odor discrimination test

To test whether or not finches prefer to feed on foods

scented with a carotenoid-derived aroma, we presented two

dishes of the plain seed, as described above, and affixed a

5-cm2 piece of b-ionone-scented or sham-scented filter

paper above the dishes. We did not scent the food directly

with b-ionone because we did not want to change the food

taste. The b-ionone scent consisted of a mixture of 20 ll

b-ionone (96% I12603; Sigma-Aldrich, St. Louis, MO, USA)

in 980 ll sunflower oil applied to the filter paper. This

mixture yields a b-ionone concentration of 1.89 lg g-1 seed,

which is consistent with the concentrations found in ripe

fruits (Beekwilder et al. 2008). The sham stimulus was

simply 1 ml plain sunflower oil applied to the filter paper.

We carried out a single test per bird on 22 November 2010,

following the same procedure as the carotenoid discrimina-

tion test above.

Statistics

All statistical analyses were carried out with SPSS 13.0

(SPSS, Chicago, IL, USA) with a set at 0.05. To test for

food preferences, we used repeated-measures analyses of

variance (rmANOVA), with seed type or odor treatment as

the within-subjects factor and capture location as the

between-subjects factor. In the comparison of carotenoid-

enriched and control foods, one of the samples from a Site 3

bird was lost (spilled), resulting in a final sample sizes of 15

from Site 1, 15 from Site 2, and 14 from Site 3. Plumage

color was not included as a factor in the rmANOVA

because finches trapped at the three sites have significantly

different colors (unpublished data) and color measures were

only available for a subset of the males: 12 from Site 1, 12

from Site 2, and 13 from Site 3. Instead, we ran correlations

between the proportion of carotenoid-enriched seeds eaten

and plumage hue for the three sites. We tested the statistical

power of our tests using the pwr package (Champely 2009)

in R 2.10 (R Development Core Team 2010) and the effect

sizes reported by Senar et al. (2010).

Results

Finches did not consume significantly different amounts of

plain versus carotenoid-enriched seeds in the first experi-

ment (F1,40 = 0.725, p = 0.40; Fig. 1a), nor did they con-

sume significantly different amounts of seed from the

b-ionone-scented versus control dishes (F1,41 = 1.22, p =

0.28; Fig. 1b). There was no significant effect of capture

location on food preference (carotenoid discrimination test:

F2,40 = 2.29, p = 0.12; odor discrimination test: F2,41 =

1.6, p = 0.21) or the total amount of food eaten (carotenoid

discrimination test: F2,41 \ 1.31, p = 0.28; odor discrimi-

nation test: F1,40 = 2.29, p = 0.12) during either experi-

ment. Finally, we did not find any significant regressions

between plumage coloration and food preference during the

carotenoid discrimination test (Site 1: F1,11 = 0.63, p =

0.45; Site 2: F1,11 = 0.002, p = 0.96; Site 3: F1,12 = 1.9,

p = 0.19) and the odor discrimination test (Site 1:

F1,11 = 0.74, p = 0.41; Site 2: F1,11 = 0.008, p = 0.98;

Site 3: F1,12 = 0.26, p = 0.62).

With our sample size (n = 45), we had sufficient power

(0.973) to detect the magnitude of carotenoid preferences

Fig. 1 a Mean ± SE mass of plain and carotenoid-enriched seeds

eaten by House Finches (Carpodacus mexicanus). b Mean ± SE

mass of plain and b-ionone-scented seeds eaten
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similar to those reported by Senar et al. (2010) (i.e.,

approx. 40% difference in food intake between treatments).

Discussion

To consume foods that meet nutritional and physiological

requirements, animals may employ foraging preferences for

specific nutrients using different cues like food color, taste,

or smell. For example, in food choice experiments, European

Blackcaps (Sylvia atricapilla) selected food containing

anthocyanins (antioxidant compounds) over food without

anthocyanins (Schaefer et al. 2008). Recently, Senar et al.

(2010) observed that Great Tits discriminate between

carotenoid-rich and -poor foods that were visually indistin-

guishable, and suggested that they may use non-visual cues

such as taste or smell to assess carotenoid content.

Avian olfaction has been seldom considered in behav-

ioral ecology research (i.e., mostly in navigational studies;

Wallraff 2004), and very few studies have examined how

birds use smell in the context of foraging (Nevitt et al.

1995; Roth et al. 2008; Kelly and Marples, 2004). This is

especially the case in passerines, for which olfactory bulb

size is very small compared to other species (Bang and

Cobb 1968). Previously, a study on Blue Tits (Cyanistes

caeruleus) showed that birds are more attracted to feeder

boxes with lavender odor than odorless feeder boxes, after

a period during which birds were trained to associate lav-

ender odor with food (Mennerat et al. 2005). Another study

found an additive effect of novel color and novel odor on

food consumption in Zebra Finches (Taeniopygia guttata;

Kelly and Marples 2004). However, in the same study,

birds did not react to the novel odor alone.

In our study, we tested the possibility that House Fin-

ches detect carotenoids in their food using smell. We did

not find evidence for non-visual carotenoid discrimination.

These negative results obtained are unlikely to have

resulted from experimental limitations for several reasons.

First, we used a greater difference in carotenoid concen-

tration between carotenoid-enriched and plain seed than

did Senar et al. (2010). Second, we used a larger sample

size (n = 45), giving us ample power to detect the effects

reported in previous food-choice experiments with birds

(Senar et al. 2010; Schaefer et al. 2008). Finally, our

manipulation of food color and lighting conditions ensured

that visual cues could not influence food preference.

Several hypotheses could explain the absence of food

preference in our experiments. First, natural sources of

carotenoids potentially contain flavors and odorants not

present in our experimental manipulations. Many of the

flavors and aromas of fruits are generated through the

specific enzymatic cleavage of carotenoids during ripening

(Britton 2008), and may have been absent in the purified

carotenoid supplement we used in our study. In addition,

b-ionone is one of the numerous carotenoid-derived aromas

(b-damascenone; for example, Winterhalter and Rouseff

2002; Beekwilder et al. 2008), but it is possible that other

specific aromas or flavors could be used by birds to dis-

criminate carotenoid content. Second, it remains possible

that House Finches use non-visual cues to find carotenoids

in the diet at other times of the year, especially during molt

when House Finches are most likely to be avid carotenoid-

seekers to develop carotenoid-based coloration (Hill et al.

2002). Third, a species’ foraging ecology may affect the

likelihood and strength of carotenoid detection in food as

well as what detection cues are used. For example, House

Finches eat primarily seeds and fruits (Hill 1993), which

often use color to attract birds (Willson and Whelan 1990).

Thus, finches may rely heavily on these visual cues to

locate and discriminate food. For example, House Finches

have distinct food color preferences, with an aversion to

yellow and a preference for red and green (Bascuñán et al.

2009; Stockton-Shields 1997). In contrast, tits primarily eat

insects that tend to be camouflaged or display aposematic

coloration with chemical defenses (Royama 1970), such

that coloration may not be a reliable indicator of food

quality, and non-visual cues like taste and smell may be

used instead.

In our experiments, plumage color did not influence

food preference during the carotenoid and odor discrimi-

nation tests. Previously, Bascuñán et al. (2009) found that

redder birds demonstrated a higher degree of food selec-

tivity, measured as the proportion of their preferred food

color consumed. Thus, it is possible that redder birds may

be more selective, using non-visual cues, on the specific

food with the amount of carotenoids physiologically nee-

ded, but our study does not rule out this hypothesis. Future

experiments may examine this question by giving repeat-

edly different foods (with the same color) with several

levels of carotenoids and assessing the potential link

between food selectivity and coloration.

Birds may also develop preferences for carotenoid-rich

food sources through post-ingestive feedback mechanisms

(Yearsley et al. 2006). Carotenoids may provide a positive

feedback through their antioxidant and immune-enhancing

effects (McGraw 2006), and studies of other bird species

demonstrate the conditioned discrimination of certain

nutrients and by-products through negative or positive post-

ingestive feedback (Clark and Mason 1987; Werner et al.

2008). Our study does not rule out this possibility because

birds had access to carotenoid-enriched food only two times

during 1 h. If such learning is an important part of carot-

enoid foraging, it will be particularly interesting to examine

which cues (e.g., color, aroma, flavor) are the most salient

because such foraging preferences may influence mate

choice and shape sexual selection. For example, the
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evolution of carotenoid-based sexually selected coloration

in guppies (Poecilia reticulata) and sticklebacks (Gaster-

osteus aculeatus) has been linked to foraging preferences

for carotenoid-rich foods (Rodd 2002; Smith et al. 2004).

This linkage has typically been discussed as a heritable bias

for particular traits; however, recently, learned biases have

been recognized as important selective forces, with a unique

influence on the evolution of sexual signals (Cate and Rowe

2007). Thus, learning the cues associated with specific

nutrients, like carotenoids, has the potential to influence the

direction and intensity of sexual selection (e.g., Rodd 2002).
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