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HIGHLIGHTS

* We measured the concentrations of
metals in feathers collected on great tits.

* Melanin pigmentation was positively
associated with the concentration of
copper.

* Melanin pigmentation was negatively
related with the concentration of chro-
mium.

« Carotenoid-based coloration was nega-
tively related with the concentration of
mercury.
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ABSTRACT

Metals are naturally found in the environment but are also emitted through anthropogenic activities, raising
some concerns about the potential deleterious effects of these elements on wildlife. The potential effects of
metals on bird coloration have been the focus of several recent studies since animal colored-signals often reflect
the physiology of their bearers and are thus used by animals to assess the quality of another individual as a mate
or competitor. These studies have shown that the melanin pigmentation seems to be positively associated and
the carotenoid-based coloration negatively associated with metal exposure in wild birds. Although these studies
have been very useful to show the associations between metal exposure and coloration, only few of them have
actually quantified the levels of metal exposure at the individual level; always focusing on one or two of them.
Here, we measured the concentrations of eight metals in great tits' feathers and then assessed how these levels
of metals were associated with the carotenoid and melanin-based colorations. We found that the melanin pig-
mentation was positively associated with the copper concentration and negatively correlated with the chromium
concentration in feathers. In addition, we have shown that the carotenoid-based coloration was negatively
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associated with the feather's mercury concentration. This study is the first one to identify some metals that might
affect positively and negatively the deposition of melanin and carotenoid into the plumage of wild birds.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Metals are naturally found in the environment (Nriagu, 1989) but
are also emitted through anthropogenic activities (Azimi et al., 2005;
Roux and Marra, 2007). As a consequence, the levels of metals have
increased in urban areas raising some concerns about the potential
deleterious effects of these elements on wildlife (Dauwe et al., 2004;
Hsu et al., 2006). Metals are commonly absorbed by wild animals
through their diet and some of the metals (zinc, iron, copper, cobalt
and manganese) are involved in the control of various metabolic and
signaling pathways (Bogden and Klevay, 2000; Valko et al., 2005).
However, at high concentrations, these metals are known to have
toxic effects, partly by the induction of high levels of oxidative stress
(Ercal et al., 2001). Other metals like cadmium and lead do not have
any known biological function but have various toxic effects (Ercal
et al., 2001).

Animal colored-signals often reflect the recent nutrition, health,
endocrinology, oxidative stress, or other resource-based attributes of
their bearers (McGraw, 2006) and are thus involved in sexual contexts
because they can be used by animals to assess the quality of another
individual as a mate (Hill, 2006) or competitor (Senar, 2006). The
potential effects of metals on animal coloration have been the focus of
several studies in the last 15 years, with a special interest on the
relationships between exposure to these metals and the deposition of
the two most common pigments of the vertebrate tegument: the
carotenoid and melanin pigments (Chatelain et al., 2014; Dauwe and
Eens, 2008; Geens et al., 2009; McGraw, 2003, 2007, 2008, Niecke
et al,, 2003; Roulin et al., 2006). So far, melanin pigmentation seems
to be positively associated with metal exposure in wild birds since
(1) more pigmented individual feral pigeons (Columba livia) are
found in urban compared to rural environments (Jacquin et al.,
2013; Obukhova, 2007), (2) darker feral pigeons had higher
concentrations of zinc in their feathers compared to paler ones
after one year in standardized conditions (Chatelain et al., 2014),
(3) copper deficiency influences plumage color in poultry species
(Leeson, 2009; Leeson and Walsh, 2004) and (4) melanin
pigmentation in great tits (Parus major) increases along a gradient
of metal pollution caused by a lead smelter in Belgium (Dauwe and
Eens, 2008). Two main hypotheses have been proposed to explain
this association. First, the tyrosinase enzyme activity, a crucial
component of the melanogenesis process, might be stimulated in
metal-rich environment due to its copper-containing molecular
structure (McGraw, 2003; Prota, 1993). Second, highly pigmented
individuals might be more able to store metals in feathers due to
the capacity of melanin pigments to bind metal ions (Chatelain
et al.,, 2014; McGraw, 2003).

To the contrary, the carotenoid-based coloration was negatively
affected along the same gradient of metal pollution Belgium (Dauwe
and Eens, 2008; Eeva et al., 1998; Geens et al., 2009) and in urban
areas (Isaksson et al., 2007). In this case, the detrimental effect of
metal exposure on coloration might be explained by a decrease in the
dietary availability of carotenoid pigments in polluted environments
(Isaksson and Andersson, 2007) and/or the allocation of carotenoid
pigment to the antioxidant and immune systems, at the detriment of
coloration, since pollutants such as metals are known to induce oxidative
stress in animals (Blount et al., 2003; Faivre et al., 2003; McGraw and
Ardia, 2003).

Although the studies published on this topic have been very useful to
show the associations between metal exposure and both melanin and
carotenoid-based colorations, only few of them have actually quantified

the levels of metal contamination at the individual level; always focusing
on one or two metals (Chatelain et al., 2014, Niecke et al. 2003, Roulin
et al. 2006). Here, we measured the concentrations of eight metals in
great tits' feathers (metal concentrations in feathers are known to reflect
blood metal levels during feather growth, Burger and Gochfeld, 1992;
Janssens et al., 2001) and then assessed how these levels of metals
were associated with the carotenoid and melanin based colorations,
allowing us to determine which specific metals might have a positive
or a negative effect on both colorations.

2. Material and methods
2.1. Field procedure

From 9th February to 6th May 2009, we use baited funnel traps to
capture 32 great tits (13 females and 19 males) in city parks in Barcelona
(Spain, see Bjorklund et al. (2010) for a detailed description of the parks).
At capture, sex and age were determined according to Svensson (1992)
and the second left and right outermost tail rectrices (R5 and L5)
were collected for later analyses of pollutant levels (see below).
Feathers were stored in dry and dark conditions in individually marked
polyethylene bags.

We also photographed each bird to measure the size of the melanin-
based black breast-tie using Image Tool 3.0© (University of Texas, USA,
Figuerola and Senar, 2000). We drew a line around the black-tie and
then measured the black area within 3 cm, starting 2 cm after the junction
of the black-tie and the white cheek (Jarvi and Bakken, 1984; Norris, 1990,
1993; Poysd, 1988; Quesada and Senar, 2007; Wilson, 1992). The use of
digital photography standardized to a metrical reference allowed a high
repeatability in the measurement of the black-tie area (Figuerola and
Senar, 2000).

The breast carotenoid-based coloration (brightness, hue and
chroma) was measured with a portable colorimeter Minolta CR200
(Minolta Corporation 1994). Three color measurements were taken at
90°, making contact with the surface of the feathers patch, and the
mean was then calculated for each of the three components of the
carotenoid-based coloration (brightness, hue and chroma). Repeatability
of these measures was high (r; = 0.85-0.92, p <0.001) (Figuerola et al.,
1999). Values of brightness, chroma and hue were collapsed into a single
variable using a Principal Components Analysis. The first eigenvalue
from PCA (N = 1.89) accounted for 63% of the variance in plumage
coloration. The three values (brightness, hue and chroma) of plumage
coloration loaded positively to the first component (PC1), with all the
values >0.70 (Brightness = 0.79, Chroma = 0.72, Hue = 0.86). Hence,
PC1 is hereafter called yellow coloration. We have shown elsewhere
that there is no correlation between tie size and the carotenoid-based
coloration in great tits (Senar et al., 2003).

2.2. Trace element analysis

Feathers were first rinsed with a 0.25 M NaOH solution for 1 min and
then with deionized water for another minute. Feathers (ca. 20 mg)
were oven dried at 60° for 24 h and then digested in H,NO5 (0.5 ml)
and H,0, (0.5 ml) in Savilles Teflon digestion vessels for 12 h at
100 °C. Levels of mercury, copper, lead, chrome, arsenic, cadmium,
antimony and zinc were measured using a ICP-MS Perkin Elmer ELAN
6000. Accuracy of analysis was checked by measuring certified reference
tissue: human hair (BCR 397, Community Bureau of Reference, Commis-
sion of the European Communities). All trace element concentrations
were expressed on a dry weight basis (ng-g~' dw). Mean recoveries
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ranged 96-100% for total mercury, selenium, copper, lead, chromium and
arsenic; and no corrections were done. Analyses were performed at the
Serveis Cientifico-Técnics from Universitat de Barcelona (UB).

2.3. Statistical methods

Values of trace element concentrations were routinely checked for
normal distributions using Q-Q plots. Metal levels data were log
transformed to meet the assumptions of parametric statistics. Variance
inflation factor (VIF) was high (>3) for three of the elements (Cd, Pb,
Sb), emphasizing the presence of colinearity and we thus assessed for
potential relationships between metal concentration and coloration
using ridge regression (Hill and Lewicki, 2007; Press et al., 2007).

Black tie size and yellow coloration were used as dependent variables,
and the concentration of metals in feathers were our independent
variables. Since sex and age could have an effect on our dependent
variables (Senar et al., 2003), we introduced sex and age as collateral
variables, to control for their effect. We used stepwise backward selection
to eliminate non-significant variables (p > 0.05) in the final model. We
used SPSS 15.0 and Statistica 9. The level of significance was fixed at 0.05.

3. Results

The concentration of metals in feathers was not influenced by age
(Wilk's test, Fgo1 = 1.42, p = 0.25), but we found an effect of sex
(sex: Wilk's test, Fg 21 = 3.04, p = 0.02), which was restricted to zinc,
males presented higher values of zinc than females (F;,s = 18.2,
p <0.001).

We found that the sum of all the metals measured was positively
correlated with tie size (F; 30 = 10.93, p = 0.002) but not with the
carotenoid-based coloration (F; 30 = 2.07, p = 0.16).

When regressing tie size in relation to the concentration of heavy
metals in feathers, we found that tie size was positively related to copper
concentration in feathers and negatively associated to chromium
concentration (Table 1, Fig. 1). We also found that the yellow breast col-
oration (PC1) was negatively correlated with the mercury concentration
in feathers (Table 1, Fig. 2).

4. Discussion

Metal exposure has been known to be positively associated with
melanin pigmentation in birds (Chatelain et al., 2014 (zinc and lead),
Dauwe and Eens, 2008 (along a metal pollution gradient), McGraw,
2003, 2007 (calcium), 2008, Niecke et al. 2003 (calcium and zinc),
Roulin et al. 2006 (calcium)) and here, we found a significant positive
relation between the feather' copper concentration and the melanin-
based coloration in great tits. This result supports the hypothesis
proposed by McGraw (2003) which stipulates that the tyrosinase
enzyme might be stimulated in metal-rich environments due to its
copper-containing molecular structure (Prota, 1993); tyrosinase being
a crucial component of the melanogenesis process where it catalyzes
the oxidative conversion of tyrosine to the intermediate product,

Table 1
Results of the ridge regressions examining the relationships between metal exposure and
coloration.

Partial r t p

Tie size

Cu 0.49 3.0 0.01

Cr —0.39 23 0.03

Sex 0.83 7.8 0.00
Yellow PC1

Hg —0.42 2.5 0.02

Sex 0.45 2.7 0.01

250

A

200 A .
150 -

100 - .

Black tie size (residual std by sex)

3.8 3.9 4.0 4.1 4.2 43 44 4.5 4.6 47
Copper concentration (ppb)

200

150 -

100 - °

50 1

-50 -

-100 -

Black tie size (residual std by sex and Cu)

-150 T T T T T T
1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28

Chromium concentration (ppb)

Fig. 1. Relationships between the feather (A) copper and (B) chromium concentrations
and the size of the black tie. Residuals are presented to account for the effect of sex
(A) and sex and copper levels (B) on tie size.

dopaquinone (Hearing and Tsukamoto, 1991; Sanchez-Ferrer et al.,
1995). Alternatively, our results might also be explained by an increased
capacity to store copper in feathers in highly pigmented individuals due
to the capacity of the melanin to bind metal ions (Chatelain et al,, 2014;
McGraw, 2003). However, under this last hypothesis, we predict that

25

Yellow breast brightness (PC1)
(residual standarized by sex)

-2.5 T T T T T
0.8 0.9 1.0 1.1 1.2 1.3 1.4

Mercury concentration (ppb)

Fig. 2. Relationships between the feather concentration of mercury and the plumage ca-
rotenoid-based coloration.
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the binding property of the melanin would not only be directed toward
the copper element and thus, more than one metal would be positively
associated with the melanin pigmentation, which was not the case in
our study. Inversely, our data also show that the melanin-based coloration
was negatively associated with the feather concentration of chromium.
Our study is the first one to show this negative association, but the
physiological mechanisms by which this metal might alter the melanin
pigmentation remain unexplored for the moment. Chromium can have
mutagenic, teratogenic and carcinogenic effects and has the ability to
produce reactive oxygen species at high concentrations (Koivula and
Eeva, 2010; Stohs and Bagchi, 1995; Valko et al., 2005). In offspring
black ducks (Anas rubripes), elevated levels of dietary chromium can
alter the growth pattern and reduce survival (Eisler, 1986). Thus, the
toxic effects of high levels of chromium are already known but future
studies should experimentally test the potential effect of this element
(at the concentration found in the wild) on the melanin coloration and
on the physiological mechanisms known to influence the development
of this coloration in birds (oxidative stress, testosterone (Galvan and
Alonso-Alvarez, 2010), corticosterone (Roulin et al., 2008)).

We have also shown for the first time a significant negative
relationship between one of the metals measured, mercury, and the
carotenoid-based coloration in a wild bird species. Our result is in
accordance with the study of Geens et al. (2009) where a reduction of
carotenoid-based coloration have been shown along a gradient of
metal pollution in adult and nestling great tits. However, plasmatic
carotenoid concentrations do not seem to be affected in metal polluted
environments in the same species or others (Eeva et al., 2012), suggesting
that the dietary availability of carotenoid is not reduced by metal
pollution (but see also Isaksson and Andersson, 2007). The toxic effects
of mercury on the neurology, physiology and reproduction of wild
animals have been well documented in the literature (Depew et al.,
2012; Wolfe et al., 1998). Interestingly, a positive correlation between
mercury levels and oxidative stress related gene expression has been
recently found in wild double-crested cormorant (Phalacrocorax auritus,
Gibson et al., 2014), suggesting that carotenoids in the body may be
drained to be used by the immune and/or antioxidant systems and thus
comparatively less available for use in ornate coloration in birds exposed
to high levels of mercury.

To conclude, our results agree with the general view that scarce
transition and alkaline earth metals obtained from the diet could act
as critical regulatory factors in the biosynthesis of melanin pigments
(McGraw, 2003, 2006, 2008). However, it seems that the melanogenesis
process is stimulated only by the copper element in great tits. In
addition, we show for the first time that another metal, the chromium,
can inversely be negatively associated with the melanin pigmentation.
Finally, we have shown that the reduction of the carotenoid-based
coloration in metal-contaminated areas might be explained by the
toxic effect of mercury.
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